PHYSICAL AND CHEMICAL CONDITIONS OF THE FORMATION OF POLYHALITE IN THE NORTHWESTERN PART OF THE QAIDAM BASIN, CHINA
DOI:
https://doi.org/10.30970/min.74.08Keywords:
polyhalite, fluid inclusions, halite, homogenization temperatureAbstract
Polyhalite deposits at Kuntei Playa in the Qaidam Basin in China have been known for many years. However, the mechanism of formation of these deposits is still unclear. In this study, a typical section of these deposits in the northwestern part of the basin is selected for a comprehensive analysis of polyhalitic deposits, which includes sedimentological, mineralogical and thermobarogeochemical studies. The following was established: 1. The temperature of bottom brines during the formation of deposits in the lower part of the studied section ranged from 30.8 to 80.2°С. Obviously, the features of sedimentogenesis, in particular, the transformation of gypsum→polyhalite, are associated with the temperature regime of bottom brines during sediment accumulation; 2. According to thermobarogeochemical data, the gypsum deposition (gypsum salting out) was the cause of mixing of fresh waters enriched in Ca(HCO3)2 with concentrated sulfate brines of the basin at the stage of sedimentogenesis, which, under the action of dense bottom brine, turned into polyhalite. This mechanism of polyhalite formation was the main one in the studied area. This is confirmed by a natural increase in the percentage of clastic components with a simultaneous increase in the percentage of polyhalite and gypsum, and vice versa a decrease in clastic components with an increase in the percentage of halite and a decrease in the percentage of polyhalite and gypsum in the sediment section; 3. The morphology of polyhalite formations indicates that this mineral was also formed at the bottom of the sedimentation basin during the unloading of pore and intercrystalline brines of chemogenic-terrigenous sediments that were compacted; 4. Relics of potassium-magnesium minerals in the studied samples and the increased magnesium content in the brines of secondary inclusions in halite do not exclude the possibility of the occurrence of part of polyhalite due to the replacement of sylvine and carnalite during the influx of calcium with solutions from nearby oil deposits.
References
Галамай А., Сидор Д., Любчак О. Особливості появи газової фази в однофазових рідких включеннях у галіті (для визначення температури його кристалізації). Мінералогія: сьогодення і майбуття. Матеріали VІІІ наукових читань імені академіка Євгена Лазаренка. Львів-Чинадієве, 2014. С. 34–36.
Галамай А. Р., Зінчук І. М., Сидор Д. В. Модернізація апаратурного устаткування термометричного методу, особливості його використання для вивчення умов формування родовищ солей. Геологічна будова та корисні копалини України: Збірник тез Всеукраїнської наукової конференції. Київ, 2022. С. 157–159.
Галамай А. Р., Зінчук І. М., Сидор Д. В. Термометричні дослідження флюїдних включень у баденському галіті карпатського регіону у контексті встановлення глибини солеродного басейну. Геологія і геохімія горючих копалин, 2023. 1–2 (189–190). С. 54–65.
Корінь С. С., Мосора Т. М. Визначення структурної позиції і кореляції шарів Калуш-Голинського родовища за допомогою маркуючої пачки полігалітових порід. Осадові породи і руди, 1978. С. 172–177.
Петриченко О. Й. Методи дослідження включень у мінералах галогенних порід. Kиїв: Наук. Думка, 1973. 91 с.
Петриченко О. Й. Фізико-хімічні умови осадконагромадження у древніх солеродних басейнах. Kиїв: Наук. Думка, 1988. 128 с.
Садовий Ю. В., Садовий Ю. Ю. Полігаліт галогенних формацій Передкарпаття: форми знаходження, генезис та розшукове значення. Мінералогічний збірник, 2012. 62 (2). С. 216–227.
Садовий Ю. В., Садовий Ю. Ю. Полігаліт в міоценових галогенних формаціях Передкарпатського прогину. Збірник наукових праць Інституту геологічних наук НАН України, 2021. 5. С. 111–117.
Acros D., Ayora C. The use of fluіd іnclusіons іn halіte as envіronmental thermometer: an experіmental stady. XІV ECROFІ, 1997. Р. 10–11.
Chen K., Bowler J. M. Late Pleistocene Evolution of Salt Lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol, 1986. 54. Р. 87–104.
Han F., Huang Q., Wang K., Wang H., Yuan L. Study of Geochemical Evolution and Palaeoclimatic Fluctuation of Kunteyi Salt lake in the Qaidam Basin, Qinghai. Oceanologia et Limnol. Sin, 1995. 26 (5). Р. 502–508. ФІЗИКО-ХІМІЧНІ УМОВИ ФОРМУВАННЯ ПОЛІГАЛІТУ...
Galamay A. R., Bukowski K., Sydor D. V., Fanwei M. The Ultramicrochemical Analyses (UMCA) of Fluid Inclusions in Halite and Experimental Research to Improve the Accuracy of Measurement. Minerals, 2020. 10 (9). 12 pages. https://doi.org/10.3390/min10090823
Galamay A. R., Karakaya M. Ç., Bukowski K., Karakaya N., Jaremchuk S. V. Geochemistry of Brine and Paleoclimate Reconstruction during Sedimentation of Messinian Salt in the Tuz Gölü Basin (Türkiye): Insights from the Study of Fluid Inclusions. Minerals, 2023. 13 (2). 22 pages. https://doi.org/10.3390/min13020171
García-Veigas J., Cendón D. I., Rosell L., Ortí F., Torres Ruiz J., Martín J. M. Salt Deposition and Brine Evolution in the Granada Basin (Late Tortonian, SE Spain). Palaeogeogr. Palaeoclimatol. Palaeoecol, 2013. 369. Р. 452–465.
Harville D. G., Fritz S. J. Modes of Diagenesis Responsible for Observed Succession of Potash Evaporites in the Salado Formation, Delaware Basin, New Mexico. J. Sediment. Petrol, 1986. 56 (5). Р. 648–656.
Holt N. M., García-Veigas J., Lowenstein T. K., Giles P. S., Williams-Stroud S. The Major-Ion Composition of Carboniferous Seawater. Geochim. Cosmochim. Acta, 2014. 134. Р. 317–334.
Hryniv S. P. Polyhalite in Miocene potash deposits of the Carpaitian Foredeep, Ukraine. Acta Mineralogica-Petrografica, XLI, Szeged, 2000. Р. 54.
Jun L., Wenxia L., Weiliang M., Qiliang T., Yongshou L., Xiaolong Y., Qingyu H., Yongsheng D., Xiying Z. Reconstruction of Polyhalite Ore-Formed Temperature from Late Middle Pleistocene Brine Temperature Research in Kunteyi Playa, Western China. Geofluids, 2022.
Article ID 6255886. https://doi.org/10.1155/2022/6255886
Li Y., Han W. An Experimental Study on the Formation Conditions of Polyhalite in Triassic System in Sichuan Basin. Geoscience, 1987. 1 (3–4). Р. 400–411.
Li C., Li B., Li Z. Census Report of the Potash deposit in Kunteyi, Lenghu Town, Qinghai Province. Delingha: The Qinghai Qiandam comprehensive geological survey unit, 1990.(in Chinese).
Li H., Yang J., Xu Z., Sun Z., Tapponnier P., Van Der Woerd J. The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau. Earth Sci. Front, 2006. 13 (4). P. 59–79.
Li M. H., Fang X. M., Galy A., Wang H. L., Song X. S., Wang X. X. Hydrated sulfate minerals (bloedite and polyhalite): formation and paleoenvironmental implications. Carbonates and Evaporites, 2020. 35 (4). Р. 1–12.
Liu C., Ma L., Jiao P., Sun X., Chen Y. Chemical Sedimentary Sequence of Lop Nur Salt lake in Xinjiang and its Controlling Factors. Mineral. Deposits, 2010. 29 (4). Р. 625–630.
Lowenstein T. K., Li J., Brown C. B. Paleotemperatures From Fluid Inclusions in Halite: Method Verification and a 100,000 Year Paleotemperature Record, Death Valley, CA. Chem. Geol., 1998. 150. Р. 223–245.
Meng F.-W., Ni P., Yuan X.-L., Zhou C.-M., Yang C.-H., Li Y.-P. Choosing the Best Ancient Analogue for Projected Future Temperatures: A Case Using Data from Fluid Inclusions of Middle-Late Eocene Halites. J. Asian Earth Sci, 2013. 67–68. P. 46–50.
Pan J., Li H., Sun Z., Liu D., Wu C., Yu C. Tectonic Response in the Qaidam basin Induced by Cenozoic Activities of the Altyn Tagh Fault. Acta Petrol, 2015. 31 (12). Р. 3701–3712.
Perthuisot J.-P. Recent Polyhalite from Sebkha El Melah (Tunisia). Nat. Phys. Sci, 1971. 232. Р. 186–187.
Niu X., Jiao P., Cao Y., Zhao Y., Liu B. The Origin of Polyhalite and its Indicating Significance for the Potash Formation in the Bieletan Area of the Qarhan Salt lake, Qinghai. Acta Geol. Sin, 2015. 89 (11). Р. 2087–2095.
Wang S., Zheng M. Discovery of Triassic Polyhalite in Changshou Area of East Sichuan Basin and its Genetic Study. Mineral. Deposits, 2014. 33 (5). Р. 1045–1056.
Wang M., Yang Z., Liu C., Xie Z., Jiao P., Li C. Potash Deposits and Their Exploitation Prospects of saline Lakes of the north Qaidam Basin. Beijing: Geological Publishing House, 1997. (in Chinese).
Wei H. On Syngenesis, Diagenesis, Anadiagenesis and Supergene Alteration of Triassic gypsum Salt in Quxian, Sichuan. Acat Sedimentol. Sin, 1987. 5 (4). Р. 56–65.
Wei X., Shao C., Wang M., Zhao D., Cai K., Jiang J. Material Constituents, Depositional Features and Formation Conditions of Potassium-Rich Salt Lakes in Western Qaidam Basin. Beijing: Geological Publishing House, 1993. (in Chinese).
Yin A., Rumelhart P. E., Butler R., Cowgill E., Harrison T. M., Foster D. A. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geol. Soc. America Bull, 2002. 114 (10). Р. 1257–1295.
Zhang P. Salt Lakes in Qaidam Basin. Beijing: Science Press, 1987. (in Chinese).
Zhang Y., Xuan Z. Economic Evaluation of Potassium and Magnesium Solid deposit in Kunteyi and Mahai Salt Lake of Qinghai Province. J. Salt Lake Sci, 1996. 4 (1). P. 36–45.
Zhang X., Fan Q., Li Q., Du Y., Qin Z., Wei H., Shan F. The Source, Distribution, and Sedimentary Pattern of K-Rich Brines in the Qaidam Basin, Western China. Minerals, 2019. 9. 655.
Zhao Y. J., Liu C. L., Zhang H., Li Z. Q., Ding T., Wang M. Q. The controls of paleotemperature on potassium salt precipitation in ancient salt lakes. Acta Petrologica Sinica, 2015. 31 (9). Р. 2751–2756.