CLAY MINERALS FORMATION CONDITIONS IN THE UPPER NEOPROTEROZOIC–LOWER CAMBRIAN ROCK SALT OF SALT RANGE FORMATION, PAKISTAN

Authors

  • Ya. Yaremchuk
  • S. Vovniuk
  • S. Hryniv
  • M. Tariq
  • F. Meng
  • L. Bilyk
  • V. Kochubei

Keywords:

clay minerals, rock salt, evaporite basin, Neoproterozoic. Salt Range Formation, Pakistan.

Abstract

Clay minerals of the Upper Neoproterozoic–Lower Cambrian rock salt of Salt Range Formation of Pakistan have been studied by means of X-ray diffraction, scanning electron microscopy, differential thermoanalysis, thermogravimetry and chemical analyses. The goal of our research was to study the formation conditions of clay mineral association of the Upper Neoproterozoic– Lower Cambrian rock salt of Salt Range Formation and to establish the role of factors which accelerated or slowed down clay minerals transformation in evaporite basin. We also aimed to distinguish which factors – general (salinity, brine chemistry) or local (volcanic ash input, elevated content of organic matter) had stronger influence on formation of clay mineral association. The clay minerals association of pelitic fraction of water-insoluble residue of these deposits consists of corrensite, chlorite and illite with the admixture of unordered mixed-layered chlorite–corrensite and chlorite–smectite; in some samples the admixture of smectite occurs. The expandable layers in corrensite are determined as smectite. In studied samples the chlorite, corrensite and mixed-layered species are presented by trioctahedral Mg-rich type and illite is dioctahedral and enriched by Fe; this association of clay minerals is typical for evaporite deposits. The conducted studies showed the presence of organic compound in interlayer intervals of structure of clay minerals. Its presence is evidenced by reflections in the region of low angles (above 1.58 nm) at diffraction patterns of thermally treated preparations. The presence of organic compound explains insufficient content of H2O revealed by chemical analyses and, accordingly, the insignificant mass loss during dehydration at DTA-curves. Studied clay mineral association of rock salt of Salt Range Formation expands limited data about Neoproterozoic clay minerals and the factors ruling their transformations. Studied clay minerals were formed from terrigenous and volcanic material brought to evaporite basin by continental runoff; in hypersaline environment unstable phases were transformed to stable minerals. In evaporite basin the elevated salinity of brines causes decrease of number of clay mineral species; in the brines originated from SO4-rich seawater the clay mineral associations are richer comparing to Ca-rich brines; local factors (volcanic ash input, elevated content of organic matter) also increase the number of clay mineral species. Comparatively rich as for the end of halite stage clay mineral association is due to strong effect of local factors. The peculiarities of clay minerals association, such as elevated Mg content of corrensite and chlorite are typical for clay minerals formed in evaporite basins with brines of SO4-rich type which is in accordance with the determination of SO4-rich seawater type for Neoproterozoic.

References

Барс Е. А. Методическое руководство по исследованию органических веществ подземных вод нефтегазоносных областей / Е. А. Барс, С. С. Коган. – М. : Недра, 1979. – 156 с.

Дриц В. А. Глинистые минералы : слюды, хлориты / В. А. Дриц, А. Г. Коссовская. – М. : Наука, 1991. – 176 с.

Дриц В. А. Глинистые минералы: смектиты, смешанослойные образования / В. А. Дриц, А. Г. Коссовская. – М. : Наука, 1990. – 214 с.

Иванов А. Г. Минеральные парагенезы галопелитов в отложениях калийных солей / А. Г. Иванов, В. Н. Аполлонов, В. И. Борисенков // Докл. АН СССР. – 1980. – Т. 253, № 2. – С. 469–472.

Казанский Ю. П. Седиментология / Ю. П. Казанский. – Новосибирск : Наука, 1976. – 272 с.

Клубова Т. Т. Глинистые минералы и их роль в генезисе, миграции и аккумуляции нефти / Т. Т. Клубова. – М. : Недра, 1973. – 255 с.

Коссовская А. Г. Кристаллохимия диоктаэдрических слюд, хлоритов и корренситов как индикаторов геологических обстановок / А. Г. Коссовская, В. А. Дриц // Кристаллохимия минералов и геологические проблемы. – М. : Наука, 1975. – С. 60–69.

Милло Ж. Геология глин (выветривание, седиментология, геохимия) [пер. с франц. М. Е. Каплана] / Ж. Милло. – Л. : Недра, 1968. – 359 с.

Пастухова М. В. К познанию аутигенных силикатных и алюмосиликатных минералов в соленосных породах / М. В. Пастухова // Литология и полезные ископаемые. – 1965. – № 3. – С. 78–90.

Рентгенография основных типов породообразующих минералов (слоистые и каркасные силикаты) / [под ред. В. А. Франк-Каменецкого]. – Л. : Недра, 1983. – 359 с.

Соколова Т. Н. Аутигенное силикатное минералообразование ранних стадий осолонения / Т. Н. Соколова. – М. : Наука, 1982. – 164 с.

Страхов Н. М. Основы теории литогенеза (Закономерности состава и размещения аридных отложений) / Н. М. Страхов. – М. : АН СССР, 1962. – Т. 3. – 550 с.

Франк-Каменецкий В. А. Трансформационные преобразования слоистых силикатов / В. А. Франк-Каменецкий, Н. В. Котов, Э. Л. Гойло. – Л. : Недра, 1983. – 152 с.

Химический анализ горных пород и минералов / [под ред. Н. П. Поповой, И. А. Столяровой]. – М. : Недра, 1974. – 248 с.

Яремчук Я. В. Глинисті мінерали евапоритів фанерозою та їхня залежність від стадії згущення розсолів і хімічного типу океанічної води / Я. В. Яремчук // Сучасні проблеми літології осадових басейнів України та суміжних територій : зб. наук. праць ІГН НАН України. – 2010. – Вип. 3. – С. 107–115.

Ahmad W. Organic geochemistry and source rock characteristics of Salt Range Formation, Potwar Basin / W. Ahmad, S. Alam // AAPG Search and Discovery Article. PAPG/SPE Annual Technical Conference 1999, Islamabad, Pakistan, October 1999. Abstracts, #90146. 2012.

Authigenic clay minerals in continental evaporitic environments / J. P. Calvo, M. M. Blanc-Valleron, J. P. Rodriguez Arandia [et al.] // Intern. Assoc. Sedimentologists Special Publication. – 1999. – Vol. 27. – P. 129–151.

Baqri S. R. H. The clay mineral studies of the Khewra Sandstone, Eastern Salt Range / S. R. H. Baqri, A. R. Raipar // Geol. Bull. Univ. Peshawar. – 1991. – Vol. 24. – P. 203–214.

Bodine M. W., Jr. Trioctahedral clay mineral assemblages in Paleozoic marine evaporite rocks / M. W. Bodine, Jr. // Sixth International Symposium on Salt 1, 1983. – P. 267–284.

Brigatti M. F. Crystal chemistry of corrensite: a review / M. F. Brigatti, L. Poppi // Clays and Clay Minerals. – 1984. – Vol. 32. – P. 391–399.

Chang H. K. Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins / H. K. Chang, F. T. Mackenzie, J. Sсhoonmaker // Clays and Clay Minerals. – 1986. – Vol. 34. – P. 407–423.

Chemical composition of seawater in Neoproterozoic: results of fluid inclusion study of halite from Salt Range (Pakistan) and Amadeus Basin (Australia) / V. M. Kovalevych, T. Marshall, T. M. Peryt [et al.] // Precambrian Res. – 2006. – Vol. 144. – P. 39–51.

Clay minerals of Miocene evaporites of the Carpathian Region, Ukraine / P. Bilonizhka, Ia. Iaremchuk, S. Hryniv, S. Vovnyuk // Bull. PIG. – 2012. – N 449. – P. 137–146.

Corrensite: a single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France) / D. Beaufort, A. Baronnet, B. Lanson, A. Meunier // Amer. Min. – 1997. – Vol. 82. – P. 109–124.

Development of the Himalayan frontal thrust zone – Salt Range, Pakistan / D. M. Baker, R. J. Lillie, R. S. Yeats [et al.] // Geology. – 1988. – Vol. 16. – P. 3–7.

Evolution of the lithosphere in Pakistan / A. Farah, G. Abbas, K. A. DeJong [et al.] // Tectonophysics. – 1984. – Vol. 105. – P. 207–227.

Geology and hydrocarbon potential of Neoproterozoic–Cambrian Basins in Asia: an introduction / G. M. Bhat, J. Craig, M. Hafiz [et al.] // Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia. – Geol. Soc. London, Special Publications. – 2012. – Vol. 366. – P. 1–18.

Geology of petroleum in Kohat-Potwar Depression, Pakistan / M. A. Khan, R. Ahmed, H. A. Raza, A. Kemal // Amer. Assoc. Petroleum Geol. Bull. – 1986. – Vol. 70. – P. 396–414.

Ghazi S. Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan / S. Ghazi, N. P. Mountney // Sediment. Geol. – 2011. – Vol. 233. – P. 88–110.

Grim R. E. Clay Mineralogy / R. E. Grim. – New York ; London ; Toronto : Mc Graw-Hill Series in Geology, 1953. – 452 p.

Honty M. Smectite-to-illite alteration in salt-bearing bentonites (East Slovak Basin) / M. Honty, P. Uhlík, V. Šucha // Clay and Clay Minerals. – 2004. – Vol. 52. – P. 533–551.

Horita J. Chemical evolution of seawater during the Phanerozoic: implications from the record of marine evaporites / J. Horita, H. Zimmermann, H. D. Holland // Geochim. Cosmochim. Acta. – 2002. – Vol. 66. – P. 3733–3756.

Jiang W.-T. Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low-grade pelitic rocks. / W.-T. Jiang, D. R. Peacor // J. Metamorph. Geol. – 1994. – Vol. 12. – P. 867–884.

Kazmi A. H. Geology and Tectonics of Pakistan / A. H. Kazmi, M. Q. Jan. – Nazimabad ; Karachi : Graphic Publishers, 1997. – 554 p.

Kopp O. C. Сorrensite in the Wellington Formation, Lyons, Kansas / O. C. Kopp, S. M. Fallis // Amer. Min. – 1974. – Vol. 59. – P. 623–624.

Kovalevich V. M. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite / V. M. Kovalevich, T. M. Peryt, O. I. Petrichenko // J. Geol. – 1998. – Vol. 106. – P. 695–712.

Mazumdar A. Stable isotopic study of late Neoproterozoic–early Cambrian (?) sediments from Nagaur–Ganganagar basin, western India: possible signatures of global and regional C-isotopic events / A. Mazumdar, S. K. Bhattacharya // Geochem. J. – 2004. – Vol. 38. – P. 163–175.

Mazumdar A. Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic–early Cambrian Bilara Group (Nagaur–Ganganagar Basin, India): constraints on intrabasinal correlation and global sulfur cycle / A. Mazumdar, H. Strauss // Precambrian Res. – 2006. – Vol. 149, N 3–4. – P. 217–230.

Mixed-layer corrensite–chlorites and their formation mechanism in the glauconitic sandstone-clayey rocks (Riphean, Anabar Uplift) / V. A. Drits, T. A. Ivanovskaya, B. A. Sakharov [et al.] // Lithology and Mineral Resources. – 2011. – Vol. 46. – P. 566–594.

Moore D. M. X-Ray Diffraction and the Identification and Analysis of Clay Minerals / D. M. Moore, R. C. Reynolds, Jr. – Oxford ; New York : Oxford University Press, 1997. – 378 p.

Murakami T. HRTEM evidence for the process and mechanism of saponite-to-chlorite conversion through corrensite / T. Murakami, T. Sato, A. Inoue // Amer. Min. – 1999. – Vol. 84. – P. 1080–1087.

Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions / T. K. Lowenshtein, M. N. Timofeeff, S. T. Brenman [et al.] // Science. – 2001. – Vol. 294. – P. 1086–1088.

Pansu M. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods / M. Pansu, J. Gautheyrou. – Berlin ; Heidelberg : Springer-Verlag, 2006. – 993 p.

Petrychenko O. Y. Early Cambrian seawater chemistry from fluid inclusion in halite from Siberian evaporites / O. Y. Petrychenko, T. M. Peryt, E. I. Chechel // Chem. Geol. – 2005. – Vol. 219. – P. 149–161.

Reynolds R. C., Jr. Mixed layer chlorite minerals / R. C. Reynolds, Jr. // Mineral. Soc. Am. Reviews in Mineralogy. – 1988. – Vol. 19. – P. 601–629.

Robinson D. Reaction pathways and reaction progress for the smectite-to-chlorite transformation: evidence from hydrothermally altered metabasites / D. Robinson, S. Th. Schmidt, A. Santana de Zambora // J. Metamorph. Geol. – 2002. – Vol. 20. – P. 167–174.

Saleemi A. A. Mineral and chemical composition of Karak mudstone, Kohat Plateau, Pakistan: implications for smectite-illitization and provenance / A. A. Saleemi, Z. Ahmed // Sediment. Geol. – 2000. – Vol. 130. – P. 229–247.

Schiffman P. The smectite to chlorite transition in a fossil seamount hydrothermal system: the Basement Complex of La Palma, Canary Islands / P. Schiffman, H. Staudigel // J. Metamorphic Geol. – 1995. – Vol. 13. – P. 487–498.

Shah S. M. I. Stratigraphy of Pakistan // Geological Survey of Pakistan Memoir. – 1977. – Vol. 12. – 138 p.

Smith A. G. A review of the Ediacaran to Early Cambrian (“Infra-Cambrian”) evaporites and associated sediments of the Middle East / A. G. Smith // Geology and Hydrocarbon Potential of Neoproterozoic–Cambrian Basins in Asia. – Geol. Soc. London Special Publications. – 2012. – Vol. 366. – P. 229–250.

Stratigraphy and environmental conditions of the terminal Neoproterozoic–Cambrian period in Oman: evidence from sulphur isotopes / S. Schröder, B. C. Scheiber, J. E. Amthor, A. Matter // J. Geol. Soc. London. – 2004. – Vol. 161. – P. 489–499.

Strauss H. The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater-evidence from the cyclic Hanseran evaporites, NW India / H. Strauss, D. M. Banerjee, V. Kumar // Chem. Geol. – 2001. – Vol. 175. – P. 17–28.

Turner C. E. Jurassic Lake T’oo’dichi: a large alkaline, saline lake, Morison Formation, eastern Colorado Plateau / C. E. Turner, N. S. Fishman // Geol. Soc. Am. Bull. – 1991. – Vol. 103. – P. 538–558.

Uhlík P. Influence of salt-bearing environment to illitization / P. Uhlík, M. Honty, V. Šucha // Proceedings of the XVII Congress of CBGA, Bratislava. – Geol. Carpathica. – 2002. – 53, CD-ROM.

Published

2024-01-22

How to Cite

Yaremchuk, Y., Vovniuk, S., Hryniv, S., Tariq, M., Meng, F., Bilyk, L., & Kochubei, V. (2024). CLAY MINERALS FORMATION CONDITIONS IN THE UPPER NEOPROTEROZOIC–LOWER CAMBRIAN ROCK SALT OF SALT RANGE FORMATION, PAKISTAN. Mineralogical Collection, 2(67), 72–90. Retrieved from https://journals.lnu.lviv.ua/index.php/mineralogy/article/view/272