POST-MAGMATIC ALTERATIONS IN THE BASIC VOLCANITES OF THE RAKHIVSKO-CHYVCHYNSKYI COMPLEX
DOI:
https://doi.org/10.30970/min.73.04Keywords:
metabasalts, post-magmatic alterations, feldspars, pumpellyite, chlorite, miner-alogical geothermometer, Rakhivsko-Chyvchynslyi magmatic complex, Ukrainian CarpathiansAbstract
We studied the post-magmatic alterations in the basic volcanites of the Rakhivsko-Chyvchynskyi complex (MZ), which are exposed in the basin of the Kamianyi Stream (right trib-utary of the Tisza River) in the Ukrainian Carpathians. The rocks gravitate towards the thrust zone of the Maramureş Massif on the flysch rocks of the Rakhiv Zone. Metabasalts predominate among the studied volcanites – greenish-grey, greenish-purple massive or breccia-like rocks with a porphyritic texture, amygdaloidal structure and spheroidal parting. According to the results of petrographic, microprobe and X-ray studies, it was determined that the main minerals of metabasalts are feldspars, chlorites, pumpellyite, carbonates, quartz, muscovite; titanite, titanomagnetite, goethite, rutile, chrome spinellides, mixed-layer formations, and apatite also occur. Amygdules in rocks are mainly filled with quartz-pumpellyite-chlorite-carbonate aggregate. Microliths or laths of plagioclase with a composition from albite to bi-tovnite prevail among the feldspars. Pumpellyite, according to the results of microanalytical studies, is represented by Al-pumpellyite. There are two morphological variations of it: (1) small grains formed as a result of the replacement of plagioclase with the formation of pseudomorphoses in it together with chlo-rite, muscovite, albite, and carbonates; (2) slightly larger crystals in amygdules together with chlorite and albite. Among the chlorites, pycnochlorite, diabantite, brunsvigite and ripidolite were identified. With the help of mineralogical geothermometers, the temperature of mineralization during the formation of paragenesis of secondary minerals in metabasalts was calculated: according to the two-feldspar geothermometer – 310–265 °С, according to chlorite one – 318–171 °С. On the PT-diagram for metamorphic facies, the mineral paragenesis of the Rakhivsko-Chyvchynslyi complex falls into the field of prehnite-pumpellyite facies.
References
Габінет, М. П., Рипун, М. Б. (1977). Нові дані про верхньоеоценовий основний вулканізм у Радянських Карпатах. Доп. АН УРСР. Сер. Б, 9, 777–780.
Кульчицька, Г., Черниш, Д. (укл.). (2019). Словник українських назв мінеральних видів. Записки Укр. мінерал. т-ва, 16, 7–446.
Кульчицька, Г., Черниш, Д., Сєтая, Л. (2022). Українська номенклатура мінералів. Київ: Академперіодика.
Лазаренко, Є. К., Винар, О. М. (1975). Мінералогічний словник. Київ: Наук. думка.
Матковський, О. (гол. ред.). (2011). Мінерали Українських Карпат. Силікати. Львів: ЛНУ імені Івана Франка.
Медведєв, А. П., Варичев, О. С. (2000). Пра-Карпати (конструкція і деструкція). Львів: [б. в.]. 7. Павлюк, М. І., Ляшкевич, З. М., Медведєв, А. П. (2013). Українські Карпати в структурі Карпат (магматизм і геодинаміка). Геодинаміка, 14 (1), 45–60. https://doi.org/10.23939/jgd2013.01.045
Третяк, К. Р., Максимчук, В. Ю., Кутас, Р. І. (заг. ред.). (2015).Сучасна геодинаміка та геофізичні поля Карпат і суміжних територій. Львів: Вид-во Львівської політехніки. 9. Cathelineau, M., & Nieva, D. (1985). Chlorite solid solution geothermometer: the Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol., 91 (3), 235–244. 10. Coombs, D. S., Ellis, A. J., Fyfe, W. S., & Taylor, A. M. (1959). The zeolite facies, with comments on the interpretation of hydrothermal syntheses. Geochim. Cosmochim. Acta, 17, 53–107. https://doi.org/10.1016/0016-7037(59)90079-1
Coombs, D. S., Nakamura, Y., & Vuagnat, M. (1976). Pumpellyite-actinolite facies schists of the Taveyanne formation near Loech, Valais, Switzerland. J. of Petrol., 17, 440–471. https://doi.org/10.1093/petrology/17.4.440 12. Deer, W. A., Howie, R. A., & Zussman J. (2013). An introduction to the rock-forming minerals. 3rd Ed. Mineralogical Society of Great Britain and Ireland. https://doi.org/10.1180/DHZ
Green, N. L., & Usdansky, S. I. (1984). Mineral chemistry and crystallization conditions of Alabama tin belt granitoids. Geol. Soc. of America. Abstracts with Programs, 16, 142.
Green, N. L., & Usdansky, S. I. (1986). Ternary feldspar mixing relations and thermoba-rometry. Amer. Min., 71, 1100-8.
Heneralova, L., Stepanov, V., Bilyk, N., & Slyvko, Ye. (2019). Serpentines as the indicators of geodynamic conditions of Mesozoic peridotites metamorphic transformations in the Marmarosh rocky zone (Inner Ukrainian Carpatians). Geodynamics, 2 (27), 39–47. https://doi.org/10.23939/jgd2019.02.039
Hey, M. H. (1954). A new review of the chlorites. Mineral. Mag., 224, 277–292.
Kranidiotis, P., & Maclean, W. H. (1987). Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol., 82 (7), 1898–1911.
Liou, J. G., Maruyama, S., & Cho, M. (1987). Very low-grade metamorphism of volcanic and volcaniclastic rocks – mineral assemblages and mineral facies. In M. Frey (Ed.). Low temperature metamorphism. London: Blackie and Son, 59–113.
Palache, C., & Vassar, H. E. (1925). Some minerals of the Keweenawan copper deposits: pumpellyite, a new mineral; sericite; saponite. Amer. Mineral., 10, 412–428.
Trzcienski, W. E., & Birkett, T. C. (1982). Compositional variations of pumpellyite along the western margin of the Quebec Appalachians. Canadian Mineralogist, 20, 203–209. 21. Willner, A. P., Sepulveda, F. A., Herve, F., Massonne, H.-J., & Sudo, M. (2009). Conditions and timing of pumpellyite–actinolite-facies metamorphism in the Early Mesozoic frontal accretionary prism of the Madre de Dios Archipelago (latitude 50°20′ S; Southern Chile). J. of Petrol., 50 (11), 2127–2155. DOI: 10.1093/petrology/egp071