FEATURES OF THE LITHOGENESIS OF PALUDAL TUFA IN THE ZUBRA RIVER BASIN
DOI:
https://doi.org/10.30970/pal.56.8Keywords:
palludal tufa, calcareous tufа, alkaline fens, geosites, Zubra river basinAbstract
A study of paludal tufa in the Zubra river basin has been conducted. The organic remains within paludal limestone tufаs were analysed, paleoecological reconstruction of their formation conditions was carried out for the first time. Additionally, the study of the current anthropogenic transformation of the travertine body has been examined. Only one travertine massif, approximately 1 hectare in size, remains in the Zubra River basin at present. It is hardly damaged by human activity and consist of an amorphous accumulation of fragments of various shapes and sizes with variable coloration, represented by two main lithofacies: phytohermal and microdetrital tufa. Phytoherms are dominated by the remains of sedge and grass plant species, whose living stems formed the framework of the deposits. Microdetrital tufas, formed mostly from calcified remains of highly decomposed fallen leaves of trees and dead parts of herbaceous plants, are characterized by a homogeneous porous structure, in which the primary organic substrate is weakly discernible. A distinctive feature of the studied tufa formations is the presence of numerous ferruginous nodules, represented by randomly distributed ore masses, nest-like iron concretions, and areas with iron inclusions. The conducted researches confirm that the tufa deposits in the Zubra River basin are remnants of carbonate (alkaline) fens, which disappeared due to active and prolonged anthropogenic transformation of the area. The specific vegetation, low water flow, shallow depth, and the presence of bicarbonate-calcium spring waters facilitated the formation of significant deposits of calcareous tufa. Despite the fact that the discovered travertine deposits with iron ore inclusions have been inactivated due to anthropogenic interference and the alkaline bog is 'dead,' we consider the location we found near the Krotoshyn village to be unique, given its historical, aesthetic, and most importantly, scientific value. The tufa body requires conservation and should be designated as a local geological nature monument, as well as being subject to further in-depth research.
References
Байрак Г. Р. Руслова мережа Львова: зміни за історичний період та сучасний стан. Вісник Львівського університету. Сер. геогр. 2016. Вип. 50. С. 3–21.
Данилик І., Борсукевич Л., Кузярін О., Гончаренко В., Ізмєст’єва С. Рідкісні оселища (NATURA-2000) верхів’я басейну ріки Західний Буг у контексті створення екологічної мережі Львівщини. URL: https://gcs.org.ua/habitats/.
Національний каталог біотопів України. За ред. Куземко А. А., Дідуха Я. П., Онищенка В. А., Шеффера Я. Київ : ФОП Клименко Ю. Я., 2018. 442 с.
Рагуліна М., Орлов О., Борняк У., Дмитрук Р., Кіт Л. Оселище вуглекислих залізистих травертинових джерел Міжгірської Верховини (Українські Карпати). Навколишнє середовище для майбутнього через наукову освіту: матеріали Міжнародної науково-практичної конференції (1–2 червня 2023). Ужгород : ПП «АУТДОР-ШАРК», 2023. С. 125–128.
Старовинні карти України. URL: https://freemap.com.ua.
Apolinarska K., Kiełczewski R., Pleskot K., Marzec M., Aunina L., Michalska D., Siepak M., Kowalczyk C., Gałka M. The decline of tufa deposition in an alkaline fen ecosystem in East-Central Europe and its impact on biotic assemblages: Insights from monitoring and paleoecological data. Science of The Total Environment. Vol. 912, 2024, 169408. https://doi.org/10.1016/j.scitotenv.2023.169408.
Arcanum Maps. URL: https://www.arcanum.com/en/maps.
Banning A., Rüde T. R., Dölling B. Crossing redox boundaries – aquifer redox history and effects on iron mineralogy and arsenic availability. Journal of Hazardous Materials. 2013. Vol. 262. P. 905–914.
Brenko T., Borojević Šoštarić S., Ružičić S., Sekelj Ivančan T. Evidence for the formation of bog iron ore in soils of the Podravina region, NE Croatia: Geochemical and mineralogical study. Quaternary International, 2020. Vol. 536. P. 13–29.
Croft D. A., Su D. F., Simpson S. W. Introduction to Paleoecological Reconstruction. Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. 2018. https://doi.org/10.1007/978-3-319-94265-0_1.
Graupner А. Raseneisenstein in Niedersachsen: Entstehung, Vorkommen, Zusammensetzung u. Verwendung. Göttinger Tageblatt. 1982. 180 р.
Hodgetts N., Söderström L., Blockeel T. et al. An annotated checklist of bryophytes of Europe, Macaronesia and Cyprus. Journal of Bryology. 2020. Vol. 42 (1). P. 1–116.
Krotoszyn. Słownik geograficzny Królestwa Polskiego, t. IV: Kęs-Kutno, Warszawa 1883, s. 711.
Kaczorek D. A., Sommer M., Andruschkewitsch I., Oktaba L., Czerwinski Z., Stahr K. Сomparative micromorphological and chemical study of “Raseneisenstein” (bog iron ore) and “Ortstein”. Geoderma, 2004. Vol. 121. P. 83–94.
Kaczorek D., Sommer M. Micromorphology, chemistry, and mineralogy of bog iron ores from Poland. Catena, 54, 2003. Р. 393–402.
Łomnicki А. M. Geologia Lwowa i okolicy. Atlas geologiczny Galicyi. Zeszyt 10 czesc 1. Kraków : Wydawnictwo Fizjograficzne Akademii Um. 1897. 208 s.
Łomnicki А. M. Przyczynek do geologii okolic Lwowa. Kosmos. 1893. XVIII. S. 337–341.
Mapy.cz. URL: https://uk.mapy.cz/
NATURA 2000. URL:https://natura2000.eea.europa.eu
Pedley M. Sedimentology of Quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain. Sedimentology, 2003. Vol. 50. Р. 23–44.
Pentecost A. Travertine. Berlin: Springer. 2005. 445р.
Plants of the World Online. POWO (2023). Facilitated by the Royal Botanic Gardens, Kew. URL:http://www.plantsoftheworldonline.org/