ЛАЗЕРНЕ СКАНУВАННЯ ПЕЧЕР: НОВІТНІ ТЕХНОЛОГІЇ ДОСЛІДЖЕННЯ ПІДЗЕМНИХ ПРОСТОРІВ НА ПРИКЛАДІ МЕДОВОЇ ПЕЧЕРИ ТА ПЕЧЕРИ МЛИНКИ

Автор(и)

  • Ігор Бубняк Національний університет «Львівська політехніка»
  • Андрій Бубняк Національний університет «Львівська політехніка»
  • Анатолій Віват Національний університет «Львівська політехніка»
  • Тарас Марко Національний університет «Львівська політехніка»
  • Катерина Бойко Національний університет «Львівська політехніка»

DOI:

https://doi.org/10.30970/vgl.39.06

Ключові слова:

печери, лазерне сканування, гіпсовий карст, тривимірне моделювання, геоінформаційні системи, Поділля, печера Млинки, печера Медова, морфологічний аналіз, геоприв’язка

Анотація

У статті розглянуто результати дослідження гіпсових карстових печер Млинки (Тернопільська область) та Медова (Львівська область), які належать до найцікавіших спелеологічних об’єктів Подільської височини. Мета роботи – створити високоточну цифрову 3D-модель внутрішнього простору печер з метою їх просторового аналізу, геологічної інтерпретації, оцінки морфологічних особливостей та можливості подальшого моніторингу геодинамічних процесів. Для досліджень застосовано комбінацію наземного лазерного сканування (TLS) з використанням сканера Leica ScanStation C10 та ручного мобільного лазерного сканера STONEX X120 GO, що забезпечило детальну зйомку як просторих залів, так і вузьких важкодоступних коридорів. Отримані хмари точок були оброблені в спеціалізованому програмному забезпеченні та інтегровані в геоінформаційні системи з використанням GNSS-референтних точок для точного розміщення моделей у глобальній координатній системі (UTM зона 35).Особливу увагу приділено методиці збору, обробки та фільтрації даних, а також етапам побудови тривимірних моделей, виконаних із міліметровою деталізацією. На прикладі печери Млинки здійснено геологічну інтерпретацію структури гіпсового пласта баденського ярусу, встановлено роль інтрастратального карсту та визначено головні напрями розвитку тектонічних тріщин. У результаті обстеження Медової печери вперше виконано повне цифрове картографування об’єкта, ідентифіковано морфологічні особливості та створено точну просторову модель для подальшого аналізу.Проведене дослідження демонструє ефективність використання сучасних технологій лазерного сканування для цілей геологічного картування підземних утворень, їх збереження, а також інтеграції в природоохоронні, наукові та туристично-освітні програми. Отримані результати можуть бути використані як основа для моніторингу стану печер, виявлення ризикових зон і створення віртуальних геотуристичних маршрутів.

Посилання

Бондар К. М., Ридуш Б. Т., Гордієнко Т. Р. Петромагнітні та палеомагнітні дослідження пухких відкладів печери Буковинка (Чернівецька обл., Україна). 10-та Міжнарод- на конференція EAGE з геоінформатики: теоретичні та прикладні аспекти: тези доп. Київ, 2011. С. CP-240. European Association of Geoscientists & Engineers.

Зімельс Ю. З., Снігур В. А. Печера Млинки. Печера Угринська. Тернопіль : ФОП Шабала Н.Є., 2012. 88 с.

Климчук О. Б. Гідрогеологічні умови розвитку і генезис карстових порожнин в неогенових сульфатних відкладах Волино-Подільського артезіанського басейну : автореф. дис. … д-ра геол. наук. Київ, 1999. 25 с.

Климчук О. Б. Розвиток теорії гіпогенного карстогенезу: наукові та практичні застосування (за матеріалами наукової доповіді на засіданні Президії НАН України 27 вересня 2017 р.). Вісник Національної академії наук України. 2017. № 11. С. 9–29.

Покалюк В. В., Аронський А. А., Шафранська Н. В., Матошко А. А. Тріщинуватість печер Поділля в аспекті ротаційних і тектонічних причин утворення. Геофізичний журнал. 2012. Т. 34. С. 101–112.

Шульц Р. В., Білоус М. В., Гончерюк О. М. Моніторинг пам’яток архітектури за допомогою даних наземного лазерного сканування. Сучасні проблеми архітектури та містобудування. 2016. № 46. С. 202–207.

Andreychouk V., Worobiec E., Gedl P., Worobiec G. Origin of the palaeokarst in Miocene evaporites on the SW periphery of the Eastern European Platform in the light of palynological studies: a case study of the Zoloushka Cave, Bukovina, Western Ukraine. Annales Societatis Geologorum Poloniae. 2014. Vol. 84. P. 30–41.

Bertash A., Keypen-Warditz D., Levoshko S. Orthodox cave churches and monasteries of the V–XX centuries in Russia and Ukraine: architectural traditions and technologies. Procedia Engineering. 2016. Vol. 165. P. 1829–1835.

Bondar K., Ridush B. Rockmagnetic and palaeomagnetic studies of unconsolidated sediments of Bukovynka Cave (Chernivtsi region, Ukraine). Quaternary International. 2015. Vol. 357. P. 125–135.

Bubniak I., Oliinyk M., Tsikhon S., Golubinka Yu., Marko T. 3D model of Medova Cave, Lviv. Geodesy, Cartography and Aerial Photography. 2023. Issue 98. P. 31–41.

Columbu A., Calabrò L., Chiarini V., De Waele J. Stalagmites: from science application to museumization. Geoheritage. 2021. Vol. 13. P. 1–11.

Constantin S., Robu M., Munteanu C. M., Petculescu A., Vlaicu M., Mirea I., та ін. Reconstructing the evolution of cave systems as a key to understanding the taphonomy of fossil accumulations: The case of Urşilor Cave (Western Carpathians, Romania). Quaternary International. 2014. Vol. 339. P. 25–40.

Coombes M.A., La Marca E.C., Naylor L.A., Piccini L., De Waele J., Sauro F. The influence of light attenuation on the biogeomorphology of a marine karst cave: a case study of Puerto Princesa Underground River, Palawan, the Philippines. Geomorphology. 2015. Vol. 229. P. 125–133.

Craven S.A. White Scar Cave, Chapel-le-Dale, North Yorkshire, England. Cave and Karst Science. 2006. Vol. 33, No. 2. P. 79.

Engel A.S. Microbes. In: Encyclopedia of Caves / eds. W. B. White, D. C. Culver. 3rd ed. Amsterdam: Academic Press, 2019. P. 691–698.

Fedje D., Mackie Q., McLaren D., Wigen B., Southon J. Karst caves in Haida Gwaii: Archaeology and paleontology at the Pleistocene–Holocene transition. Quaternary Science Reviews. 2021. Vol. 272. Article 107221.

Ford D., Williams P.D. Karst hydrogeology and geomorphology. Chichester: John Wiley & Sons, 2007. 562 p.

Frumkin A., Weinstein-Evron M. Nahal Me’arot caves: archive of human evolution against the background of prolonged karstic processes. Zeitschrift für Geomorphologie, Supplement. 2021. Vol. 62. P. 283–300.

Gallay M., Kaňuk J., Hochmuth Z., Meneely J.D., Hofierka J., Sedlák V. Large-scale and high-resolution 3-D cave mapping by terrestrial laser scanning: a case study of the Domica Cave, Slovakia. International Journal of Speleology. 2015. Vol. 44, No. 3. P. 277–291.

Gerovasileiou V., Trygonis V., Sini M., Koutsoubas D., Voultsiadou E. Three-dimensional mapping of marine caves using a handheld echosounder. Marine Ecology Progress Series. 2013. Vol. 486. P. 13–22.

Goldberg P., Sherwood S.C. Deciphering human prehistory through the geoarchaeological study of cave sediments. Evolutionary Anthropology: Issues, News, and Reviews. 2006. Vol. 15, No. 1. P. 20–36.

Goltenboth F., Timotius K.H., Milan P.P., Margraf J. (eds.). Ecology of insular Southeast Asia: the Indonesian archipelago. Amsterdam : Elsevier, 2006. 739 p.

Grigore S. A brief history of Ialomița Cave (Dâmbovița County, Romania). Annales d’Université “Valahia” Târgovişte. Section d’Archéologie et d’Histoire. 2020. Vol. 22, No. 1. P. 113–120.

Haslam M., Korisettar R., Petraglia M., Smith T., Shipton C., Ditchfield P. In Foote’s steps: the history, significance and recent archaeological investigation of the Billa Surgam caves in southern India. South Asian Studies. 2010. Vol. 26, No. 1. P. 1–19.

Hofierka J., Hochmuth Z., Kaňuk J., Gallay M., Gessert A. Mapovanie jaskyne Domica pomocou terestrického laserového skenovania. Geografický časopis. 2016. Vol. 68, No. 1. P. 3–24.

Klimchouk A. Ukraine giant gypsum caves. In: Encyclopedia of Caves / eds. W. B. White, D. C. Culver. 3rd ed. Amsterdam: Academic Press, 2019. P. 827–833.

Klimchouk A.V., Andreychouk V.N., Turchinov I.I. The structural prerequisites of speleogenesis in gypsum in the Western Ukraine. 2nd ed., revised. Sosnowiec–Simferopol : University of Silesia, Ukrainian Institute of Speleology and Karstology, 2009. 96 p.

Kempe S. Morphology of speleothems in primary (lava-) and secondary caves. In: Treatise on geomorphology / ed. J. F. Shroder. Vol. 6. Amsterdam: Elsevier, 2013. P. 251–264.

Koning K., McFarlane R., Gosse J.T., Lawrence S., Carr L., Horne D., та ін. Biomineralization in cave bacteria—popcorn and soda straw crystal formations, morphologies, and potential metabolic pathways. Frontiers in Microbiology. 2022. Vol. 13. Article 933388.

Liu X., Shan Y., Ai G., Du Z., Shen A., Lei N. A scientific investigation of the Shangfang Mountain Yunshui Cave in Beijing based on LiDAR technology. Land. 2024. Vol. 13, No. 6.

Moseley M. Size matters: scalar phenomena and a proposal for an ecological definition of ‘cave’. Cave and Karst Science. 2009. Vol. 35, No. 3. P. 89–94.

Prijatelj A. History of cave archaeology in Slovenia: Politics, institutions, individuals, methods and theories. Cave and Karst Science. 2011. Vol. 38, No. 3. P. 137–143.

Shults R., Bilous M., Kovtun V. Monitoring and preservation of the Kyiv Pechersk Lavra Caves. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2019. Vol. 42. P. 1053–1058.

Straub R. Introduction to underwater cave surveying. Mitteilungen des Verbandes der Deutschen Höhlen- und Karstforscher. 2015.

Tabib W., Goel K., Yao J., Boirum C., Michael N. Autonomous cave surveying with an aerial robot. IEEE Transactions on Robotics. 2021. Vol. 38, No. 2. P. 1016–1032.

Urban J. Caves and karst sites of Poland as a contribution to geological heritage of Central Europe. Polish Geological Institute Special Papers. 2004. Vol. 13. P. 89–96.

Valladas H., Kaltnecker E., Quiles A., Tisnérat-Laborde N., Genty D., Arnold M., та ін. Dating French and Spanish prehistoric decorated caves in their archaeological contexts. Radiocarbon. 2013. Vol. 55, No. 3. P. 1422–1431.

Vassilakis E., Konsolaki A. Quantification of cave geomorphological characteristics based on multi source point cloud data interoperability. Zeitschrift für Geomorphologie. 2022. Vol. 63. P. 265–277.

White W.B. Surveying caves. In: Encyclopedia of Caves / eds. W. B. White, D. C. Culver. 3rd ed. Amsterdam: Academic Press, 2019. P. 1013–1022.

White W.B., Culver D.C. Cave, definition of. In: Encyclopedia of Caves / eds. W. B. White, D. C. Culver. 3rd ed. Amsterdam: Academic Press, 2019. P. 255–259.

Woodfill B.K., Guenter S., Monterroso M. Changing patterns of ritual activity in an unlooted cave in central Guatemala. Latin American Antiquity. 2012. Vol. 23, No. 1. P. 93–119.

Zhou W., Gao Z., Li.H., Xiong K. Research on karst cave mapping based on terrestrial laser scanning. Carsologica Sinica. 2022.

Zlot R., Bosse M. Three-dimensional mobile mapping of caves. Journal of Cave & Karst Studies. 2014. Vol. 76, No. 3. P. 191–202.

##submission.downloads##

Опубліковано

2025-10-29